HILLSIDE INFILTRATION: PRACTICAL SOLUTION OR SLIPPERY SLOPE?

By Randal Dyer, PG and Brian Hall, PE

REID PROPERTY INFILTRATION EVALUATION

CASE STUDY

SEATTLE AREA

ISSAQUAH HIGHLANDS DEVELOPMENT

INFILTRATION BENCH

GOALS AND OBJECTIVES

- **5 Evaluate Whether Dormant Infiltration System Could Accept 6-CFS of Stormwater Without Impacting Slope Stability.**
- **5 Evaluate if Ground Water Mounding Would Impact Facilities at the Toe of The Slope**

SLOPES AND WATER

- 5 Arrival of Extra Water is the Most Common Event Triggering Slope Failure.
- **5** So is Infiltrating water the Slippery Slope?

LANDSLIDE MODES IN SEATTLE

- 5 High Bluff Peel off
- 5 Ground Water Blowout
- **5** Deep-Seated Landslides
- **5** Shallow Colluvial (Skin Slide)
 - P Most Failures are Shallow Colluvial
 - P Most are Caused by Permeable layer Over Impermeable Layer

THE "RIGHT" CONDITIONS

- 5 Permeable Soils
- **5** Cohesionless Soil
- **5 Low Permeability Difference Between Layers**
- 5 Expensive Land to Make Additional Work Justifiable

GROUND WATER MOUNDING

PHASED GO-NO GO APPROACH

- 5 Review Available Geology and Hydrogeology Data.
- 5 Conduct Preliminary Field Evaluation.
 - 3 Detailed Field Mapping.
 - 3 Test Pits, Borings, Monitoring Wells.
 - 3 Grain Size Analyses.
- 5 Conduct Small-Scale Pilot Infiltration Tests (PIT).
 - 3 Monitor Field Parameters (ground water level, etc.)
- 5 Conduct Large Scale Infiltration Test.
- 5 Perform GW Mounding and Slope Stability Analysis.

GEOLOGIC MAP

CROSS SECTION A - A'

CROSS SECTION B - B'

CHALLENGES

- 5 Find a Sustainable Source of Water to Conduct the Large Scale Infiltration Test at 6-CFS (2,700 GPM).
- 5 Monitor Infiltration Test to Prevent Hillslope Failure and damage to adjacent structures.

INSTRUMENTATION

BASE OF BENCH SLOPE

INFILTRATION BENCH INTERBEDDING

CROSS SECTION C - C'

WATER DISCHARGE DISSIPATER

DISCHARGE FLOW DISSIPATER

DISCHARGE FLOW TO DISSIPATER

FULL-SCALE INFILTRATION TEST RESULTS

- 5 Infiltration Rate
- **5** GW Mounding
- 5 Slope Stability

SUMMARY of DISCHARGE FLOW and INFILTRATION RATES

Time	Water	Flow Rate	Infiltration
(hours)	Depth	(CFS)	Rate
	(feet)		(inches/hour
5.5	0.3 to 0.7	3.7	52
13.5	0.4 to 0.7	5.4	62
3	0.4 to 0.7	6.6	75

24-HOUR INFILTRATION TEST GW Levels and Average Discharge

SLOPE STABILITY

- 5 Analyses using the Piezometer Monitoring Data.
- 5 Minimum Factor of Safety was 1.8.

KEY RESULTS

- 5 Water Ponded in Infiltration trench to 0.7 feet.
- 5 Preferential Interbedded Flow.
- 5 No Seepage Breakout.
- 5 No Slope Movement.

INFILTRATION FACILITY

CONCLUSIONS

5 HILLSLOPE INFILTRATION NOT NECESSARILY SLIPPERY SLOPE

- 5 "Right" Hydrogeological Conditions
- **5** Detailed Phased Investigation
- 5 Full-scale Infiltration Testing
- 5 Proper Infiltration Facility Design

INFILTRATION TEST

